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Abstract

The chaotic behaviour of particle drift orbits ending on the target plates in a poloidal divertor tokamak is studied.

The source of the chaotic motion is taken to be the non-axisymmetric magnetic ®eld perturbations. As is well known

from the Chirikov±Taylor-map studies, near the separatrix, the perturbed magnetic ®eld lines also develop a structure

with various islands immersed in a chaotic sea. Following ion drift orbits across such a separatrix layer, it is shown here

that particle orbits also develop both chaotic and coherent layers. Hence, the ion heat ¯ux transported along such orbits

displays a corresponding inhomogeneous distribution over the divertor plates. Ó 1999 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The axisymmetric toroidal magnetic ®eld structure of

the divertor tokamak is a Hamiltonian system, which

forms a sharp separatrix between closed toroidal mag-

netic surfaces that con®ne the plasma, and open ®eld

lines that divert the exhaust plasma. The occurrence of

small resonant magnetic ®eld perturbations, however,

can lead to the onset of chaotic ®eld line di�usion [1±3].

Using a straight three-wire model and simulating thou-

sands of ®eld-line trajectory circuits around the major

axis, Pomphrey and Reiman [1] have shown that these

deviate from ¯ux surfaces about the divertor separatrix

and wander throughout a stochastic layer [4], whose

width depends on the magnitude of the perturbation.

Plasma particles within the stochastic ®eld line structure

can easily escape the con®nement, and be led by their

open orbits to the divertor target plates, since their drift

orbits may likewise become chaotic. Unlike magnetic

®eld lines, particle orbits are also directly subject to the

action of the existing electric ®elds. In particular, a ra-

dial electric ®eld, which is instrumental for the L-H

Mode transition [5±7], is expected to have a determining

e�ect upon the width and the form of the chaotic drift

orbit layer. Thus, in a large, long-pulse tokamak, the

footprint of particle bombardment over the plates, may

re¯ect the typical island and chaotic sea structures, a

pattern indicating local excessive heat concentrations.

As for the non-axisymmetric perturbation, here, we in-

troduce a very small n � 1 ®eld perturbation, whose

magnitude is typical for present day tokamaks due to

®nite installation tolerances [1], and show its signi®cant

e�ect on the particle±orbit evolution. The non-axisym-

metric perturbations due to magnetic ®eld ripples [3],

although typically much larger than the perturbations

envisaged here, have a high toroidal mode number

which reduces their e�ect.

2. A divertor model and the drift orbits

In cylindrical coordinates (R,z,/), plasma is repre-

sented by a coil having radius R0 and carrying a current

Ip in / direction. Each divertor coil located at �zd w.r.t.

the plane of the plasma coil, and has radius

Rd�R0 + xd carries a current Id. The magnetic ®eld for

the unperturbed con®guration can be written as
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Here, K and E are complete elliptic integrals of the ®rst

and second kind, respectively. One takes I � Ip; q0 �
R0; q � R0 � x; f � z for Bp, and I� Id, f� z ÿ (�zd),

q0 � R0 � xd; q � R0 � x for B�. Our calculations were

carried out for xd� 0, zd� 1.93, c� Id/Ip� 0.64, R0� 1/

e, where e� 0.3. We de®ne k � l0Ip=4pR0B0 � 1=q,

where q is the safety factor, and take k� 0.06e. To this

axisymmetric poloidal ®eld we add an n� 1 vacuum ®eld

perturbation as dBx � hkB0 exp�x=R0� cos /, and

dB/ � ÿhkB0 exp�x=R0� sin /, where we choose

h� 0.001/k. The di�erential equation for guiding-center-

drift-orbits for ions is given in Ref. [8] as below, where

b � B=B; q0a � �vth=a��m=eb� and u is normalized:

dx

dt
� ub� q0ab� u2b � rb� lrB� 1

2
gr/

�
�D � r�bu�D� � ub � rD

�
�3�

parallel velocity, i.e., u � ��E ÿ 2lBÿ gU�1=2; l �
V 2
?=�2B� and D � g�B�rU�=�2B2� where g � eUref=kT .

Here, E and l are constants of motion. B(x,z,/) and

U(x,z,/) are normalized by B0 and Uref , respectively. In

Eq. (3), we omit products involving D. For computations

we take q0a� 0.01. Using the identity b´b�Ñb�
ÿ(bbÿ I)�$´b one can rewrite Eq. (3) for its components

along x, z, and /. Substituting magnetic ®eld from

Eq. (1), drift orbits can be calculated numerically. The

transversal electric ®eld, ÿÑU, can be modelled by using

the constancy of n�RA/ over the undisturbed magnetic

¯ux surfaces, namely, one can choose

/�n� � 0:5 Tanh �nÿ n��=D� � ÿ 1f g; �4�
where (*) denotes the value at the separatrix, and vector

potential A/ is due to three coils. In Eq. (4), the steep-

ness of the potential is modeled by the parameter D.

3. Chaotic drift orbits

The autonomous (3) can be rewritten as

dx
dt
� Fx�x; z;/; E; l�; dz

dt
� Fz�x; z;/; E; l�;

d/
dt
� F/�x; z;/; E; l�; �5�

where E and l are parameters. These equations corres-

pond to a conventional 3/2 degree of freedom non-int-

egrable Hamiltonian system [9]. For a drift orbit starting

from a given point, they can be solved by numerical

methods. It is interesting to determine orbits ®rst in the

absence of divertor plates and without electric ®eld ef-

fects. For a non-integrable perturbation, the drift orbits

do not cover some toroidal surfaces, but wander

through a stochastic layer close to the drift surfaces of

the axisymmetric problem. The width of the stochastic

layer depends on the value of the perturbation param-

eter h. If the width associated with the nonaxisymmetry

for h values mentioned above are small, then the intro-

duction of plates is not as critical as in the case of a

wider stochastic layer. However, the stochastic layer of

particle orbits can have even a wider spread than that of

the perturbed magnetic ®eld lines, since the former do

not only depend on two more parameters, such as E and

l but also are susceptible to the electric ®eld e�ects.

Accordingly, more complicated orbit shapes are possi-

ble, beyond the well known transiting or banana orbit

forms, depending on E and l which are ®xed by initial

conditions, and due to the pro®le of an electric potential.

In Fig. 1, a Poincar�e section of some particle orbits with

arbitrary initial conditions, starting from the horizontal

vicinity of the unperturbed separatrix at the lower-target

plate is shown. The section was obtained following each

orbit for 2000 toroidal circuits and by plotting a point

every time it passes through /� 0 plane. The target

plates are assumed to be placed at zp��1.4. Fig. 2.

shows the Poincar�e section of particle orbits at the lower

divertor plate. The coherent part of this plot displays

only part of the complicated detail. To clearly de®ne the

shape of all the structure, one needs a longer integration

time than seemed appropriate.

In the presence of divertor plates, a particle would be

lost upon the ®rst intersection of its orbit with a plate.

To extend the concept of the loss cones in the velocity

space of a particle [10] to the stochastic case, we consider

Fig. 1. Poincar�e section of some randomized orbits starting

from various points near separatrix.
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all orbits passing from a given point near separatrix at

the midplane with di�erent Vjj and V? (i.e., E and l)

values. In Figs. 3 and 4, we indicate the number of to-

roidal transits N/ made (not exceeding 200) by each

orbit before it intersects a plate. Some of the orbits reach

one of the plates within the ®rst toroidal transit, whereas

some others can do so after thousands of transits. In this

sense, these plots show us the stochastic widening of the

boundaries of the loss regions. As the probability for

particle collisions with a large N/ is higher, the widening

of the boundaries is an indication for the collisional

replenishing of the loss cones. The same plot also shows

the region for generalized banana orbits which cannot

reach any of the plates. A similar plot can be made also

for a given electrical potential pro®le (Fig. 4.).

The BPX scrape-o� width was found in Ref. [1] an

order of magnitude narrower than the calculated sto-

chastic layer width of the magnetic ®eld lines both at the

midplane and at the target plates. Our calculations in-

dicate that the stochastic layer of particle orbits have

even a wider spread than that of the ®eld lines, if there is

no electric ®eld e�ect.

Our calculations indicate that for electrical ®eld

pro®les with a sharper peak, particle orbits are not al-

ways squeezed together, as conventionally believed, but

sometimes are also spread.
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Fig. 3. Loss cone structure in the velocity space with zero

electric potential. Horizontal and vertical axes denote Vjj and

V?, respectively. Number of toroidal transits N/ made by each

orbit starting from x� 1.35, /� 0.0, z� 0.0; with di�erent ve-

locities before it intersects a plate is shown. Note the gradual

transition of N/ at the borders of loss cones. Banana orbits are

denoted by the symbol).

Fig. 4. Loss cone structure in the velocity space with electric

potential. g� 0.5, D� 0.03. Horizontal and vertical axes denote

Vjj and V?, respectively. Number of toroidal transits N/ made

by each orbit starting from x� 1.35, /� 0.0, z� 0.0; with dif-

ferent velocities before it intersects a plate is shown. Note the

gradual transition of N/ at the borders of loss cones. Banana

orbits are denoted by the symbol).

Fig. 2. Poincar�e section of particle orbits at the lower divertor

plate. The vertical axis denotes the toroidal angle. The orbits

were started from /� 0.0 and z�ÿ1.4 with di�erent values

for x.
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